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Abstract—This paper proposes techniques to improve the
properties of Sequential Markov Chain Monte Carlo (SMCMC)
methods in the context of multi-target tracking. In particular,
we extend the Interacting Population-based MCMC Particle
Filter (IP-MCMC-PF) with three different methods: delayed
rejection, genetic algorithms, and simulated annealing. Each
of these methods furnishes the IP-MCMC-PF algorithm with
different theoretical guarantees which are empirically analysed
in this paper.

Firstly, the use of delayed rejection in the Metropolis-Hastings
(MH) samplers is proposed in order to reduce the asymptotic
variance of the estimate. Secondly, the crossover operator, in-
spired by genetic algorithms, is presented as a mechanism to
increase the interaction of the MH samplers. Thus, attaining
fast convergence of the time-consuming MCMC step. Thirdly,
simulated annealing is introduced with the goal of increasing the
robustness of the algorithm against divergence due to e.g. poor
initialisations.

Finally, the results from our experiments show that the
proposed methods strengthen the multi-target tracker in the
aforementioned aspects.

Index Terms—multi-target tracking, Bayes filter, particle fil-
tering, Markov chain Monte Carlo, sequential Monte Carlo,
Metropolis-Hastings, IP-MCMC-PF, delayed rejection, genetic
algorithms, simulated annealing.

I. INTRODUCTION

Multi-target tracking is a well-known problem which in-

volves the joint detection of an unknown and time-varying

number of targets as well as the estimation of their individual

states from sensor data. This problem poses significant tech-

nical challenges and has found application in various discip-

lines, including econometrics, image and signal processing,

and biomedical engineering [1], [2].

The Bayesian framework provides a rigorous tool to solve

dynamic state estimation problems (e.g. target tracking) under

a probabilistic approach. In our application of interest, multi-

target tracking based on radar measurements, the model non-

linearities together with the multi-modality of the state space

make the application of Bayesian sequential state estimation

particularly challenging.

Classical approaches to multi-target tracking rely on a

pre-processing chain prior to the tracker which comprises

target detection and measurement extraction (producing the

so-called plot measurements). Both detection and extraction

depend on threshold-based decisions, which are made before

information from the past is integrated into the processing.

However, in order to perform optimally, these hard decisions

should be made using all available information, that is, past

as well as present measurements. In contrast to the classical

approach, in Track Before Detect (TBD) the hard decisions are

postponed until the end of the processing chain [3]. In addition,

the measurement-to-track or data association problem, which

constitutes part of the tracker in the classical approach, need

not be explicitly solved under the TBD approach, since the

raw measurements are given to the tracker.

The Particle Filter (PF) [4] is an implementation of the

prediction and update equations of the Bayes filter suitable

for nonlinear and non-Gaussian problems. Particle filtering

is a type of Sequential Monte Carlo (SMC) method that

represents the distributions of interest by a set of weighted

samples called particles. One of the most common forms of

the particle filter is based on Sampling Importance Resampling

(SIR). The SIR-PF suffers from a lack of efficiency especially

relevant in the case of multi-target tracking. In particular, the

number of particles necessary for the successful application

of the filter grows exponentially with the dimension of the

target distribution. To overcome this limitation, [5] proposed

a strategy to exploit the independency among targets, thus

circumventing the high dimensionality of the joint multi-target

probability density. Another alternative introduced in [6] is the

use of Markov Chain Monte Carlo (MCMC) within the PF

in multi-target tracking. This partially explains the growing

interest towards Sequential MCMC (SMCMC) methods that

are suited to simulate complex, non-standard, multi-variate

distributions [7]. In the context of multi-target tracking, a

recent method leveraging SMCMC techniques is the Inter-

acting Population-based MCMC-PF (IP-MCMC-PF) [8]. This

algorithm is able to track a fixed and known number of targets.

The literature concerning the design of MCMC samplers

is vast. It includes modifications and “tricks” one can apply

to MCMC algorithms in order to improve their theoretical

guarantees and performance in practice. The goal of the work

presented in this paper is to improve the performance and the

characteristics of the IP-MCMC-PF algorithm for multi-target

tracking utilising strategies from statistics and optimisation

theory.

This paper is organised as follows. Section II describes

formally the multi-target tracking problem under a Bayesian

approach. Next, section III is occupied with the core theor-

etical concepts relevant to this work; starting with a brief

introduction to SMCMC methods and continuing with the fun-

damentals of IP-MCMC-PF. Section IV presents the methods

we propose to use in conjunction with IP-MCMC-PF. In



particular, we show for each of the three proposed methods

(delayed rejection, genetic algorithms, and simulated anneal-

ing) new properties beneficial for IP-MCMC-PF. First, delayed

rejection reduces the asymptotic variance of the estimate or, in

other words, keeps the correlation among the samples of the

Markov chain low. Second, the crossover move from genetic

algorithms increases the exchange of information among the

MH samplers, achieving rapid convergence to the steady state

of the chain. Third, annealing of the likelihood function

enhances tracking robustness against divergence of the particle

filter. Afterwards, Section V contains the experiments and

results supporting the advantages that the suggested methods

bring into the whole framework. Finally, the paper finishes

with some conclusions and branches of future work in Sec-

tion VI.

II. MULTI-TARGET BAYES FILTER

This section describes the multi-target Bayesian filtering

problem in the context of TBD tracking. Suppose that at time

k there are nk targets with states xk,1, . . . ,xk,nk
, each taking

values in a state space X . In TBD, the multi-target observation

at time k is an array zk = [z1k, . . . , z
m
k ] ∈ Z, where each

z
c
k ∈ C is the complex (I/Q) signal in the radar cell indexed

by c and m denotes the number of cells. In the Random Finite

Set (RFS) framework [9], the finite set used to represent the

joint states of the targets is referred to as the multi-target state,

while the vector of intensities measured per cell at time k is

the multi-target observation1. Formally,

Xk = {xk,1, . . . ,xk,nk
} ∈ F(X ), (1)

zk = [z1k, . . . , z
m
k ] ∈ Z. (2)

Let z1:k = {z1, . . . , zk} denote the set of measurements

collected up to and including time k. Then, the multi-target

Bayes recursion propagates the multi-target posterior density

fk(Xk|z1:k) in time according to the following update and

prediction equations:

fk|k−1(Xk|z1:k−1) =
∫

Πk|k−1(Xk|Xk−1) fk−1(Xk−1|z1:k−1) δXk−1, (3)

fk(Xk|z1:k) =
ϑk(zk|Xk) fk|k−1(Xk|z1:k−1)
∫

ϑk(zk|X) fk|k−1(X|z1:k−1) δX
, (4)

where the integrals above are set integrals, Πk|k−1(·|·) is the

multi-target transition kernel from time k−1 to k, and ϑk(·|·)
denotes the multi-target likelihood function at time k.

Given the current multi-target state X, each x ∈ X either

continues to exist at the next time step with probability pS(x)
and moves to a new state x+ with probability π(x+|x), or dies

with probability 1− pS(x). In addition, the set XB ⊂ X+ of

newborn targets, assumed independent of the surviving targets,

1Random finite sets become a useful tool in multi-target tracking as the
state is composed of an unknown, yet finite, time-varying number of targets.
Using random finite sets, it is possible to formulate the multi-target Bayes
filter for sequential estimation in a concise manner.

can be modelled with a multi-Bernoulli RFS with parameters

{pB(ℓ), b
(ℓ)
+ (·)}nMBer

ℓ=1 .

The multi-target state X+ at the next time step results

from the superposition of surviving and newborn targets, i.e.

X+ = XS ∪XB . Under the assumption that, conditional on

X, the transition of the target kinematic states are mutually

independent and that births are independent of surviving

targets, it was shown in [9] that the multi-target transition

kernel is given by the convolution

Π(X+|X) =
∑

XS⊆X+

ΠS(XS |X) ΠB(X+ \XS), (5)

where,

ΠS(XS |X) =

{

pS(x) π(x+|x), if x+ ∈ XS ;

1− pS(x), otherwise;

and

ΠB(XB) =

{

pB(ℓ) b
(ℓ)
+ (x+), if x+ ∈ XB ;

1− pB(ℓ), otherwise.

The TBD approach defines a model for the raw measure-

ment in terms of a multi-target state hypothesis. In this context,

the target return signals measured by the radar are assumed

to fluctuate according to the Swerling return amplitude fluc-

tuation models [10], [11]. The Swerling fluctuation models

are incorporated into the likelihood function of the filter, to

account for the target return fluctuations. At a certain time

step k, a radar illuminates a given target x+ ∈ X+ and the

target reflection appears in the field of view of the radar. The

complex (I/Q) signal in each cell of the observation image,

denoted by zc, is assumed to be

zc =
∑

x+∈X+

hc(x+) + wc, (6)

where wc is the measurement noise in cell c with known

statistics. In this case, the contribution hc(x+) of a target

with state x+ to the signal in cell c depends on the so-

called sensor point spread function, the target location, and the

complex target echo [3]. In addition, the noise is assumed to

be independent from cell to cell, additive, white, and Gaussian

identically distributed.

Using the Finite Set Statistics (FISST) notion of integration

and density, an explicit expression for Π(X+|X) can be de-

rived from (5). Then, the predicted density of the multi-target

state can be computed using the total probability theorem.

Finally, the posterior probability density of the multi-target

state can be obtained from the Bayes rule for probability

densities.

Note that the discussion in this section is generic, suitable

for problems where the number of targets is time-varying.

Nonetheless, the rest of the paper focuses on the IP-MCMC-

PF algorithm, which deals with a fixed and known number of

targets.

III. FUNDAMENTALS

In this section, the relevant work on SMCMC methods and

the IP-MCMC-PF algorithm are reviewed.



A. Sequential Markov Chain Monte Carlo

SMCMC was first investigated in [6], [7]. These methods

are distinct from the traditionally employed resample-move

scheme [12] since an SMC algorithm is used to design effi-

cient high-dimensional proposal distributions for an MCMC

sampler. In other words, the inefficient importance sampling

step of the standard SIR-PF implementation is replaced by a

more efficient MCMC sampling step. These methods allow

effective MCMC algorithms to be designed in complex scen-

arios where standard strategies fail [6].

Within the Bayesian estimation framework, the goal is to

compute the filtering density fk(X+|z1:k) recursively by

fk(X+|z1:k) ∝

∫

ϑk(zk|X+) Πk|k−1(X+|X)

fk−1(X|z1:k−1) δX, (7)

where Πk|k−1(·|·) and ϑk(·|·) are, as introduced in the previ-

ous section, the multi-target transition density and the multi-

target likelihood, respectively. Let us represent the density

fk−1(X|z1:k−1) by a set of equally weighted particles,

f̂k−1(X|z1:k−1) ≈
1

Np

Np
∑

i=1

δX(i)(X), (8)

where Np denotes the number of particles and (i) the particle

index. Then, by plugging this particle approximation into (7),

f̂k(X+|z1:k) ≈
1

Np

ϑk(zk|X+)

Np
∑

i=1

Π(X+|X
(i)). (9)

In [6] a Metropolis-Hastings (MH) algorithm is designed

in a sequential setting in order to approximate the filtering

distribution in (7). This is achieved by using the approximate

posterior in (9) as the target distribution. Let us denote the pro-

posal distribution by q(·|XnMH−1
+ ) and a sample from this dis-

tribution by X
∗
+. Thus, the acceptance ratio α(X∗

+|X
nMH−1
+ )

is

α = min

(

1,
fk(X

∗
+|z1:k)

fk(X
nMH−1
+ |z1:k)

q(XnMH−1
+ |X∗

+)

q(X∗
+|X

nMH−1
+ )

)

. (10)

The desired approximation f̂k(X+|z1:k) is obtained by storing

every N th
thin accepted sample after the initial burn-in iterations.

B. Interacting population based MCMC-PF

In [8], an alternative algorithm well suited to deal

with multi-target tracking problems for a given cardinality

was derived from the Marginalized MCMC-based Particle

method [6]. The proposed algorithm, detailed in [8], denoted

by IP-MCMC-PF, is based on the parallel usage of multiple

population-based Modified Metropolis-Hastings (MMH) [13]

samplers and incorporates an interaction procedure for produ-

cing improved proposals.

The standard MH algorithm [14], [15] does not generally

work well in high-dimensional spaces because the update of

the Markov chain leads to the repeated sample X
nMH =

X
nMH−1 with high probability [13]. In order to overcome

this deficiency of the MH algorithm, a variation of the MMH,

appropriate for sampling from high-dimensional distributions,

was proposed in [8]. The MMH algorithm differs from the

standard MH algorithm in the way that the candidate state

X
∗
+ is generated. Instead of sampling from a proposal density

q(·|XnMH−1
+ ) in the joint multi-target space to obtain the

candidate state X
∗
+, a sequence of single-target proposals

qj(·|x
nMH−1
j+ ) is used, where j indexes a partition of the

joint multi-target state. Namely, each partition x
∗
j+ of the can-

didate state is drawn separately using a proposal distribution

qj(·|x
nMH−1
j+ ) in the single-target state space.

Finally, a validation test is performed in order to check

the convergence of the MCMC step on the basis of Gel-

man and Rubin’s diagnostic [16]. For each state parameter,

this approach consists of first computing the variance of

the samples from each chain (after discarding burn-in), then

averaging these within-chain variances, and finally comparing

the averages to the variances of all the chains mixed together.

This is done via the potential scale reduction factor, denoted

by R̂. The parallel chains are considered well-mixed when

R̂ ≤ 1.1 for all variables of the state space. Once the set

of chains has reached convergence, the concatenated outputs

from all the MH chains give the new set of particles {X
(i)
+ }

Np

i=1,

which approximates the target distribution fk(X+|z1:k).

IV. IP-MCMC-PF INGREDIENTS

This section is occupied with the description of the methods

we propose to boost the multi-target tracking performance of

IP-MCMC-PF. Namely, these methods are delayed rejection,

crossover, and simulated annealing.

A. Metropolis-Hastings algorithm with delayed rejection

In the Metropolis-Hastings algorithm, the rejection of pro-

posed moves X∗
+ is an intrinsic part of ensuring that the chain

converges to the intended target distribution fk(Xk|z1:k).
However, persistent rejection, perhaps in particular parts of

the state space, may indicate that the proposal distribution is

poorly calibrated. Furthermore, remaining in the same state

X+ for some time affects the quality of the corresponding

Markov chain by increasing the correlation among its states.

Therefore, the estimate obtained by averaging along the chain

becomes less efficient. As an alternative to careful offline

tuning of the state-dependent proposals, the MH algorithm

with delayed rejection (MHDR) was proposed in [17], [18].

The key idea behind the MHDR algorithm is to reduce

the number of rejected candidates, and thus the correlation

between states of the Markov chain. This goal can be achieved

in the following way: whenever a candidate is rejected, instead

of taking the current state of a Markov chain as its new state

(as in standard MH), a second proposal is made, let us denote

it by X
∗∗
+ , with density q2(·|X

∗
+,X

nMH−1
+ ). Of course, the

acceptance probability of the new candidate must be adjusted

in order to keep the distribution invariant. As shown in [17],

the acceptance probability α2(X
∗∗
+ |XnMH−1

+ ) corresponding



to the second proposal can be chosen as

α2 = min

(

1,
fk(X

∗∗
+ |z1:k)

fk(X
nMH−1
+ |z1:k)

×
q(X∗

+|X
∗∗
+ )

q(X∗
+|X

nMH−1
+ )

q2(X
nMH−1
+ |X∗∗

+ ,X∗
+)

q2(X∗∗
+ |X∗

+,X
nMH−1
+ )

×
1− α(X∗

+|X
∗∗
+ )

1− α(X∗
+|X

nMH−1
+ )

)

. (11)

This new proposal preserves detailed balance at the second

stage. If the second stage proposal is accepted, then the

chain moves there. Otherwise, it is possible to either retain

the current state X
nMH−1
+ , or continue performing delayed

rejection moving on to a third stage, and so on.

An interesting feature of the delayed rejection strategy is

that the proposal distribution at the second stage is allowed to

depend on the rejected value at the first stage as well as on

the current state of the chain. Thus, the second stage proposal

can learn from previously rejected candidates (without losing

the Markovian property).

Before putting an end to the discussion about delayed

rejection, note that this method involves more likelihood

computations, which are expensive, compared to standard MH.

Still, this cost may compensate in some situations where

proposals are continuously rejected (consider for instance the

case of ambiguous radar data [19]).

B. Genetic algorithms

Genetic algorithms (GAs) [20] belong to another class of

optimizers widely used to perform heuristic search. GAs are

based upon the process of natural selection from Darwinism

and its Theory Of Evolution. A GA simulates the evolution of

a population (that is, a set composed of possible solutions)

whose members are in competition for their own survival.

Mimicking the principle of survival of the fittest, the best

individuals from the population breed in order to produce

better offspring. Therefore, the overall fitness of the population

is promoted. In our SMCMC framework for multi-target

tracking, genetic operators shall be applied to improve the

particles of the filter.

There exist several distinct classes of genetic operators [21].

Among them, in this paper the focus is on crossover because it

is a flexible genetic operator in terms of interaction between

chains. The crossover operator chooses two samples of the

population (these will be the parents) to generate new off-

spring. In our implementation of the multi-target Bayes filter,

the two parents X
(i1)
+ and X

(i2)
+ are synthesised as follows: for

a certain j, the partitions x
(i1)
j+ and x

(i2)
j+ are combined with a

certain probability of crossover Pco,

x
(i1)∗
j+ = α x

(i1)
j+ + (1− α) x

(i2)
j+ ,

x
(i2)∗
j+ = β x

(i2)
j+ + (1− β) x

(i1)
j+ . (12)

The weights α and β of the convex combinations are given

by

α =
ϕ
(

x
(i1)
j+

)

ϕ
(

x
(i1)
j+

)

+ ϕ
(

x
(i2)
j+

) , β =
ϕ
(

x
(i2)
j+

)

ϕ
(

x
(i1)
j+

)

+ ϕ
(

x
(i2)
j+

) ,

(13)

where ϕ (·) is the fitness function.

Even though the crossover operator discussed in this section

uses two samples to produce offspring, this idea can be

extended in a natural manner by using more than two samples

to produce a convex combination more general than (12).

Finally, it deserves mention that the inclusion of crossover

in MH does not entail additional computational cost in com-

parison with standard MH. However, the parallel design of the

algorithm must account for synchronisation of the samplers to

propagate proposals before their combination in crossover.

C. Simulated annealing

Simulated annealing (SA) [22] is an optimisation algorithm

particularly useful in problems dealing with multi-modal

search spaces. Essentially, SA is based on the behaviour

followed by a crystalline solid under the thermodynamical pro-

cess of annealing. Annealing is controlled by the temperature

of the process. In principle, at the beginning of annealing,

when the temperature is high, the structure of the solid is

highly deformable, whereas it becomes gradually fixed while

it is cooled down. Analogously, simulated annealing favours

transitions to proposals lying on a larger space (intuitively,

“further” from the current seed) when the temperature is high

than when it is low. Consequently, the algorithm is prevented

from being trapped in local extrema.

It is also possible to interpret simulated annealing in terms

of the spread of the function being optimised. For high tem-

perature values the function is flattened, hence the acceptance

ratio in (10) tends to one for a large range of proposal-seed

pairings. Let us now revisit this concept formally for a choice

of the objective function relevant to our application, as it

shall be discussed before long. Let the objective function g be

proportional to the negative exponential of a certain function

h of the state,

g(X) ∝ exp (−h(X)) . (14)

SA augments the objective function with a variable T , which

stands for the temperature, that can take values within a certain

set, i.e. T ∈ {Ti}
L
i=1, where T1 = 1 and T1 < ... < TL. The

augmented objective function is

g̃(X, T ) = exp

(

−
h(X)

T

)

. (15)

Naturally, the decay of the exponential is slower for larger

values of the temperature.

In the multi-target tracking context, simulated annealing

of the point spread function within the likelihood function

(see [3] for a detailed derivation of these functions) can make

filtering via SMCMC more robust. Particles located in low

probability regions of the state space owing to, for instance,

poor cloud initialisations or a large difference between the
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Figure 1: Experimental multi-target tracking scenario for the simulations.
For each of the five targets, the dot represents the start position in the target
trajectory, whereas the arrow denotes the final position and direction of the
trajectory.

prior and the posterior can be brought to a better state by

using simulated annealing. This effect is more significant in

likelihood functions with a high peak and a quick roll-off.

Note that annealing is only applied during a preliminary step

of the MCMC procedure. Afterwards, the temperature is set

to one so that the samples of the posterior are drawn using

the true likelihood.

V. SIMULATION AND RESULTS

In this section, we investigate through simulations the

improvements achieved with the three techniques introduced

in Section IV (namely delayed rejection, crossover move,

and simulated annealing) on traditional MH. In particular, the

goal of the simulations is to provide empirical support of the

advantages that the three proposed techniques bring to IP-

MCMC-PF as a multi-target tracker.

To this end, a common scenario in which a fixed and known

number of targets moves along straight lines is considered. The

true tracks are shown in Figure 1. Five targets are present

throughout the entire scenario lasting 50 seconds. In the

experiments, we adopt a Nearly Constant Velocity (NCV)

model to describe the dynamics of each target [23]. The

state xk,j of a single target j at time step k comprises the

position and velocity of the target in the Cartesian plane,

sk,j = (xk,j , ẋk,j , yk,j , ẏk,j). The likelihood expression im-

plemented is based on the Swerling II fluctuation model [24].

The power of a target echo in one range-bearing-Doppler cell

is assumed to follow the exponential distribution. Additionally,

the target echo is assumed to be independent from cell to cell.

Thus, the likelihood of the measurement zk, conditioned on

the multi-target state Xk, is exponentially distributed. At the

beginning of the simulations, the particle clouds are initialised

drawing samples from a uniform distribution defined in a

square window of side length equal to 100 [m] centered around

the targets’ true locations.

The remaining of this section discusses the experiments

performed for each of the proposed techniques to enhance the

design of the IP-MCMC-PF algorithm.

A. Delayed rejection

As explained in Section IV-A, introducing a second proposal

in the MH algorithm increases the probability that the Markov

chain moves to a new state. Therefore, the correlation among

the samples of the chain per state dimension is reduced.

For this experiment, the second proposal density (q2 in (11))

consists of a random walk centered around the current state

of the chain X
nMH−1
+ ,

X
∗∗
+ ∼ q2(·|X

nMH−1
+ ) = N

(

X
nMH−1
+ ,Σ∗∗

)

, (16)

where Σ∗∗, the covariance matrix of the walk, is a scaled-down

version of the process noise covariance matrix in the NCV

model. Hence, the random walk performs a local exploration

around the seed.

Figure 2 shows the autocorrelation function of the particle

cloud at two time steps; after the first and after the last

measurement have been incorporated. The x state variable

of one of the targets is used to compute the autocorrelation.

The figure reports the mean and the standard deviation of

the autocorrelation over 50 Monte Carlo (MC) simulations.

In Figure 2a, after the first SMCMC time step, it can be seen

that the particles are roughly equally correlated, independently

of whether Metropolis-Hastings is used with delayed rejection

(MHDR), or without delayed rejection (MH). After the last

SMCMC time step of the simulation, the standard deviation

of the autocorrelation in Figure 2b is approximately five times

larger in MH than in MHDR.

After the first SMCMC time step, the particle clouds are in-

fluenced by the uniform initialisation of the particles centered

around the targets. In this case, the correlation among the

samples is governed by this initialisation and it is not possible

to appreciate a difference between using MHDR and MH

from the autocorrelation function. On the other hand, after

some SMCMC steps, the particle clouds shrink, converging to

the true tracks. From this moment, the samples drawn using

delayed rejection are less correlated than without delayed

rejection, see Figure 2b.

B. Genetic algorithms

In this section, we present two experiments that show the

impact of using genetic algorithms (in particular, the crossover

operator) on the convergence of MH. To this end, tools for

convergence diagnostics of MCMC are required. In the work

presented here, Gelman and Rubin’s method for monitoring

convergence is used, see Section III-B.

Before introducing the experiments in this section, our

choice of the proposal distribution in MHGA is described.

Let i1 denote one of the MMH samplers in the IP-MCMC-PF

algorithm. With certain probability of crossover Pco, another

sampler denoted by i2 (i1 6= i2) and a partition j of the

multi-target state are randomly chosen using integer uniform

distributions. Then, a new proposal x
(i1)∗
j+ is obtained as
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be observed by studying the standard deviation.

Figure 2: Autocorrelation of the samples obtained after burn-in using
standard Metropolis-Hastings (MH) and MH with delayed rejection (MHDR).
The average and standard deviations are obtained using 50 Monte Carlo
simulations.

indicated in (12). For the computation of the weight α in (13),

the fitness function chosen is the likelihood function. The

probability of crossover used in the experiments is Pco = 0.2.

In the first experiment, we run MH with the crossover

operator (MHGA) and without crossover (MH) for the multi-

target scenario presented at the beginning of Section V, and

monitor the length of the burn-in period. Figure 3 shows the

result of this experiment, obtained averaging the results of 100
MC simulations. As it was expected due to the interaction

among the samplers, the figure shows that the chain reaches

convergence in a considerably shorter burn-in for MHGA in

the early time steps of SMCMC. Some steps after initialisation,

once the tracking has converged, the length of the burn-in
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Figure 3: Length of the burn-in period (measured in number of iterations)
using standard Metropolis-Hastings (MH) and MH with the crossover operator
(MHGA). The results are obtained by averaging 100 Monte Carlo simulations.
As it can be seen from the figure, MHGA reduces considerably the length of
the burn-in period in the early steps of SMCMC.

Table I: MH and MHGA position RMSE (measured in metres) with burn-in
period fixed to five.

Target 1 Target 2 Target 3 Target 4 Target 5

MH 245 272 231 209 144
MHGA 49 60 45 38 36

remains the same in both approaches.

Secondly, we fix the length of the burn-in to five and analyse

the tracks obtained using both algorithms. The goal of this

experiment is to challenge MHGA and standard MH utilising

a short burn-in period, and study whether correct tracking can

be achieved under this condition. Table I shows the Root-

Mean-Square Error (RMSE) of the targets’ positions. For each

target, the RMSE shown in the table is obtained by taking the

average of the RMSEs throughout the simulation. The average

of 50 MC runs is used to compute the result. For MHGA, the

RMSE is about five times lower than for MH. In fact, we

have observed that in many of the MC runs MH is not able to

perform tracking correctly in this experiment, whereas MHGA

is able to track the targets despite the short burn-in period.

C. Simulated annealing

This section demonstrates the power of using simulated an-

nealing in terms of robustness against faulty target detections

and likelihood functions with a high peak and a quick roll-off.

First of all, the concept of annealing the likelihood function

is illustrated through a simple, static scenario. Afterwards, the

gain in robustness against divergence of the particle filter is

shown in a single-target tracking simulation.

Figure 4 shows two “likelihood maps” in a single-target

scenario where the target is located at (xt, yt) = (2000, 2000)
with SNR equal to 5 [dB]. For this figure only one target is

used to ease the illustration of simulation annealing. With like-

lihood map we refer to the result of evaluating the likelihood

function in a region of the plane close to the position of the



(a) Annealing with temperature equal to one (equivalent to the true likelihood).
Due to the noisy measurement, the likelihood evaluated at the point closer to
the target is much smaller than the one evaluated at the further point.

(b) Annealing with temperature equal to ten. In this case, the main mode of the
likelihood is more spread. Thus, the point closer to the true target’s location
has got a larger log-likelihood ratio.

Figure 4: Single-target likelihood function with simulated annealing. The
target is at (xt, yt) = (2000, 2000) with SNR equal to 5 [dB]. Two data
points are shown, one corresponding to a position closer to the target. The Z
values shown in the labels are log-likelihood ratios.

target. In Figure 4a, which corresponds to the true likelihood,

there are some fluctuations which stem from peaks of noise.

However, these fluctuations are no longer present in Figure 4b

when annealing with T = 10 is applied; in this case it can be

seen that the main mode of the likelihood is widespread.

Consider a particle far from the true target’s location, which

could be for instance caused by an erroneous cloud initial-

isation due to an error in the detection. This is represented

in Figure 4 by the point at (xs, ys) = (1853, 1925). Next,

suppose that this particle is chosen to seed an MH sampler

in the IP-MCMC-PF algorithm. During update, imagine that

a certain proposal is (xp, yp) = (1925, 1970). Intuitively, the

proposal in the example should be accepted since it is better

positioned than the seed with respect to the true target’s loca-

tion. Using the true likelihood function (i.e. without annealing,

or, equivalently, with temperature T = 1) in Figure 4a, it is

rather unlikely that the proposal would be accepted as the

acceptance ratio is small, α < 0.1. On the contrary, the same

move would be accepted with probability equal to one using

annealing with T = 10 shown in Figure 4b.

This simple example serves to illustrate the principle that

simulated annealing brings more robustness into the algorithm.

Notwithstanding that, annealing with a too high temperature

may completely distort the measurement, losing any infor-

mation regarding the target’s location. In addition, note also

that annealing should be used only during burn-in so that the

samples drawn after burn-in used to update the particle cloud

represent the true posterior density.

The remainder of this section is occupied with an experi-

ment comparing the robustness of the tracking achieved with

Metropolis-Hastings with simulated annealing (MHSA) and

MH. In this experiment, the target follows a straight line

trajectory, like the ones shown in Figure 1, and the SNR is

equal to 5 [dB]. The particle cloud in this case is initialised

150 [m] far from the target’s true location along each axis

(i.e. 150 [m] in x and 150 [m] in y). This scenario simulates

an error in the detector which is commonly used during

initialisation in target tracking. The goal of this experiment is

to analyse whether it is possible for MHSA and MH to find the

right track despite the inaccurate particle cloud initialisation.

In the case of MHSA, the initial annealing temperature is

TL = 10 and the temperature step is ∆T = 1. For each value

of the temperature, sampling with MH is performed until the

steady state of the Markov chain is reached in the sense of

the Gelman and Rubin’s diagnostic, reviewed in Section III-B.

Regarding our choice of the proposal in MHSA, it consists of

a random walk similar to (16). In the case of MHSA, the

random walk is centered around a randomly chosen particle

from the predicted particle cloud.

After 100 MC simulations, we obtain that tracking with

MH is able to find the target’s true track only in 7 occasions,

whereas MHSA succeeds 69 times. This is an improvement

of almost 10 times in terms of robustness. In this exercise,

we consider successful tracking if the estimate is within 1.5
times the size of a radar cell from the target’s true location at

the end of the simulation. Figure 5 shows the particle clouds

throughout time obtained with MHSA and MH in a single MC

simulation where only MHSA is able to find the true track.

VI. CONCLUSIONS

The work presented in this paper proposes the use of three

techniques in conjunction with the IP-MCMC-PF algorithm to

enhance its performance in the multi-target tracking problem.

In fact, each of the mentioned techniques contributes to

improve IP-MCMC-PF in a different aspect. Firstly, delayed

rejection in Metropolis-Hastings (MH) reduces the correlation

among the samples of the Markov chain by means of a local

search, thus improving the overall quality of the estimated

posterior. Secondly, the crossover operator from genetic al-

gorithms shortens the burn-in period of the MCMC step –
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Figure 5: Particle clouds obtained with Metropolis-Hastings with simulated
annealing (MHSA) and standard MH. The particle clouds are initialised
somewhat far from the target’s true location. MHSA is shown to be more
robust than MH since MHSA is able to converge to the true track.

attaining convergence faster – by allowing the combination

of samples from different MH samplers. In addition, MHGA

is able to track successfully even if the burn-in period is

constrained. Finally, simulated annealing improves robustness

against divergence of the PF. All these claims are supported

by empirical results in Section V.

Although this paper focuses on the multi-target tracking

problem for a fixed number of targets, it is worth mentioning

that this is not a limitation of the techniques proposed here. In

fact, the IP-MCMC-PF algorithm can be extended in order to

track a time-varying number of targets [25]. Naturally, delayed

rejection, the crossover operator, and simulated annealing are

still applicable even if the number of targets is neither known,

nor fixed.

Apart from the techniques proposed in this work, there are

many other well-known strategies in the statistics literature

that are possible to use in conjunction with MH, as well as

other MCMC algorithms. In the forthcoming work, we shall

therefore focus on the study of these (and possibly other)

research paths to develop more robust and efficient algorithms

for multi-target tracking to manage applications with vast

amounts of data.
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